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Thermal blob size as determined by the intrinsic viscosity
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a b s t r a c t

It is shown that the mass of the thermal blob, normalized by the mass of its effective monomer, is
a unique function of the solvent quality represented by the Mark–Houwink–Sakurada exponent. This
function specifies the relation between intrinsic viscosity and that measured in a theta solvent. As
a result, the Mark–Houwink–Sakurada exponent can be determined from intrinsic viscosities measured
for a single molecular mass. The form of the derived function is also confirmed by the constancy of
calculated thermal blob mass for a given polymer of different molecular masses, dissolved in a solvent of
a given quality.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The intrinsic viscosity is a quantity which characterizes the
hydrodynamic behavior of macromolecules in solution. It is a basis
for molecular characterization. The proper interpretation of
measured values makes it possible to determine the structure of
macromolecules in solution. Intrinsic viscosity for a given dissolved
polymer strongly depends on the solvent quality.

According to standard view the scaling behavior is observed
only for the self-avoiding, random walk and collapsed chains [1].
The crossover domain in-between is described by the thermal blob
model, in which the chain is viewed as a sequence of blobs.

The blob model was introduced to illustrate the results of first
calculations of the renormalization group [2]. An excluded volume
dependent cutoff distance has been postulated to exist in a polymer
coil, within which the chain is Gaussian and beyond which is
swollen. The size of the thermal blob depends thus on the solvent
quality. The theta chain is a random walk, whereas a macromole-
cule in a very good (athermal) solvent is maximally uncoiled, so the
blob has a size of the order of the Kuhn monomer.

The crossover from poor solvent to good solvent is treated by the
thermal blob first growing up to the theta-temperature and then
shrinking again. The number of thermal blobs in a chain, changing
with temperature, is connected with the chain expansion factor,
calculated [3] for both the static and dynamic properties of the
chain.
All rights reserved.
The intrinsic viscosities can be represented by the Mark–Hou-
wink–Sakurada equation, which can be written for the theta
solvent as

½h�q¼ KqM1=2 (1)

and for any solvent quality in the form

½h� ¼ KhMa (2)

The intrinsic viscosity of a given polymer in a solvent crosses
over to the theta result at a molecular mass, which is the thermal
blob mass [1].

Viscometric expansion factor ah can be expressed as follows

a3
hh
½h�
½h�q
¼ Kh

Kq
Ma�1=2 (3)

Putting ah
3¼1 one gets the thermal blob mass

MT ¼
�

Kq

Kh

�1=ða�1=2Þ
(4)

The Mark–Houwink–Sakurada relations are empirical equations
that have intermediate effective exponents, usually in the range
0.5–0.8, which correspond to the crossover between Gaussian and
self-avoiding chains. The effective exponent varies with excluded
volume. The chain structure in this nonscaling region, however, can
be analyzed in more detail.
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Nomenclature

a Mark–Houwink–Sakurada exponent (�)
amq

radius of non-porous monomer of fractal aggregates
representing an individual macromolecule in a theta
solvent and a thermal blob (m)

b length of Kuhn segment (m)
c mass concentration (kg m�3)
D fractal dimension (�)
i number of non-porous monomers in the fractal

aggregate modeling a macromolecule (�)
Kh Mark–Houwink–Sakurada constant (m3 kg�1)
Kq Mark–Houwink–Sakurada constant in theta solvent

(m3 kg�1)
M mass of a macromolecule (u)

Mmq
mass of non-porous monomer of fractal aggregates
representing an individual macromolecule in a theta
solvent and a thermal blob (u)

MT thermal blob mass (u)
N number of Kuhn segments in a chain (�)
r hydrodynamic radius of a coil (m)
R root-mean-square end-to-end distance (m)
CR2

D mean-square end-to-end distance (m2)
ah viscometric expansion factor (�)
h solution viscosity (kg m�1 s�1)
h0 solvent viscosity (kg m�1 s�1)
[h] intrinsic viscosity (m3 kg�1)
n excluded volume (Flory) exponent (�)
rs solute density (kg m�3)
f volume fraction of impermeable spheres equivalent to

an arrangement of coils (�)
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Witten [4] and Witten and Pincus [5] demonstrate the transition
from random walk to self-avoiding chain by chain swelling,
modeled by progressive grouping monomers and discarding all
configurations with intersections. They show that the scaling
between chain length and size is possible and the self-avoidance
alters the scaling relationship. The corresponding exponent, called
the Flory swelling exponent, is a function of the swelling factor.
The scaling is thus permitted and the Mark–Houwink–Sakurada
relations have a theoretical support.

The continuous scaling exponent demonstrated by Witten [4]
and Witten and Pincus [5] can be regarded as a theoretical support
for many power-law experimental data of solution properties
changing over a range of molecular mass and hence makes it possible
to model the macromolecular chains as fractal aggregates of fractal
dimension dependent on thermodynamic quality of the solvent.

The last two equations give the relation between viscometric
expansion factor and the number of thermal blobs in a chain

a3
h ¼

�
M
MT

�a�1=2

(5)

or

a3
h ¼

�
M
MT

�3n�1:5

(6)

where

n ¼ aþ 1
3

(7)

This equation can be confronted to the Han equation [3],
describing the crossover between Gaussian and self-avoiding
chains by the blob model,

a3
h ¼

4ð1� nÞð2� nÞ
ð2nþ 1Þðnþ 1Þ

�
M
MT

�3n�1:5

(8)

to conclude that the viscometric expansion factor is under-
estimated for good solvents (n¼ 3/5) by a factor of 0.636 if deter-
mined by the Han equation. Calculating the thermal blob mass by
Eq. (8) one should expect an underestimation by a factor of 0.222.

In this paper the thermal blob mass is investigated as dependent
of the solvent quality and the relation between intrinsic viscosity
and that measured in a theta solvent is derived.
2. Model

The viscosity of a polymer solution can be calculated using the
Einstein formula [6] for the viscosity of a suspension

h ¼ h0

�
1þ 5

2
f

�
(9)

being dependent on the volume fraction f of suspended imper-
meable particles. To determine f for a polymer solution, it is
necessary the polymer coils be represented by spheres which are
impermeable to solvent [7]. The hydrodynamic spheres equivalent
to coils can have, however, an internal structure characteristic for
aggregates. The knowledge of this structure makes it possible to
connect the volume fraction of equivalent spheres to the solution
mass concentration.

Assuming that the polymer is dissolved in a theta solvent and
can be represented by an aggregate of fractal dimension D¼ 2,
composed of non-porous spheres of radius amq

and mass Mmq
; the

mass-radius relation can be expressed according to [8]

i ¼ M
Mmq

¼
�

r
amq

�2

(10)

where the hydrodynamic radius of aggregate r is the radius of an
impermeable sphere of the same mass having the same dynamic
properties.

The mass concentration of the solution can be expressed as

c ¼ frs

iam3
q

r3 ¼ frsi�1=2 ¼ frs

�
M

Mmq

��1=2

(11)

The intrinsic viscosity is

½h�qh lim
c/0

h� h0

h0c
¼ lim

c/0

5
2

c
rs

�
M

Mmq

�1=2

c
¼ 5

2rs

�
M

Mmq

�1=2

(12)

Comparing with the Mark–Houwink–Sakurada equation one
gets

½h�q¼
5

2rs

�
M

Mmq

�1=2

¼ KqM1=2 (13)
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Fig. 1. Dependence of normalized mass of thermal blob in aggregate representing
an individual macromolecule on Mark–Houwink–Sakurada exponent, depicted for
intrinsic viscosity data [11] for several polymers: D – poly(oxyethylene); B – poly(2-
vinylpyridyne); P – poly(styrene); , – poly(a-methylstyrene).
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Fig. 3. Confirmation of Eq. (16) with the generalized Mark–Houwink–Sakurada
exponent dependence of the normalized thermal blob mass (Eq. (18)) by viscosity data
[11] of several polymers: D – poly(isobutene);B – poly(vinyl chloride); P – poly
(propylene), isotactic; , – poly(methyl methacrylate), atactic; > – poly(butyl meth-
acrylate); – lpoly(a-methylstyrene).
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From Eq. (13) one derives

Mmq
¼
�

2:5
rsKq

�2

(14)

The obtained formula can be utilized to determine the mass of
non-porous monomer of fractal aggregates representing an indi-
vidual macromolecule in a theta solvent and a thermal blob.

The above approach differs from the standard picture, in which
the structure of a linear macromolecule in a theta solvent is
modeled by flexible chain by grouping a sufficient number of bonds
(2a-1)
1/3
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Fig. 2. Linearized dependence of normalized mass of thermal blob in aggregate
representing an individual macromolecule on Mark–Houwink–Sakurada exponent,
supported by intrinsic viscosity data [11] for several polymers: D – poly(oxyethylene);
B – poly(2-vinylpyridyne); P – poly(styrene); , – poly(a-methylstyrene). The solid
line represents Eq. (18).
into one effective segment [9,10] of length b, known as the Kuhn
segment or monomer, such that the root-mean-square end-to-end
distance R is described as

Rh
D

R2
E1=2

¼ bN1=2 (15)

The Kuhn segment is not similar geometrically to equivalent
sphere, taken here as a model of macromolecular coil, which
becomes more pronounced with growing stiffness of the chain.

The thermal blob mass MT depends on the solvent quality [8].
The form of this dependence is strongly influenced by the mass of
non-porous monomer Mmq

of fractal aggregates, which is different
for different polymers. The thermal blob mass normalized by the
mass of non-porous monomer, however, is the number of non-
porous monomers in one thermal blob and therefore it is expected
to be a unique function of the solvent quality. Using Eqs. (4) and
(14) one gets

MT

Mmq

¼
�

2:5
rs

��2�
K�2a

q Kh

�1=ð1=2�aÞ
(16)

It is also possible to derive from Eqs. (1), (2), (16)

½h�q¼
�

2:5
rs

�1�1=ð2aÞ�MT

Mmq

�ða�0:5Þ=ð2aÞ
½h�1=ð2aÞ (17)
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Fig. 4. Comparison of the Mark–Houwink–Sakurada exponent with these calculated
by Eqs. (17) and (18) for different molecular mass of the systems at 25 �C: poly
(chloroprene) – n-butyl acetate, a¼ 0.620 [15]; poly(ethylene oxide) – water a¼ 0.679
[16]; poly(styrene)-benzene, a¼ 0.739 [17]; poly(ethylene oxide) – methanol,
a¼ 0.768 [18].
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Fig. 5. The thermal blob mass over a range of macromolecular mass depicted for
comparison the values determined either from Eq. (19) by the Mark–Houwink–
Sakurada exponent or these calculated by Eq. (20) for different molecular masses of the
systems at 25 �C:P – poly(chloroprene) – n-butyl acetate, a¼ 0.620 [15]; B – poly
(ethylene oxide) – water a¼ 0.679 [16].
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Fig. 7. Thermal blob mass calculated by Eq. (20) as dependent on temperature for the
system poly(p-methylstyrene) – diethyl succinate [19] of different values of molecular
mass: P – 6.84�105; , – 7.62�105; B – 8.96� 105.

L. Gmachowski / Polymer 50 (2009) 1621–16251624
which is the relation between intrinsic viscosity and that measured
in a theta solvent, in which the normalized thermal blob mass is
involved.

To determine the solvent quality dependence of the normalized
thermal blob mass, there were analyzed the viscosity data collected
in Ref. [11]. The values of the Mark–Houwink–Sakurada constant
for polymers were utilized only if given in sufficient wide spectrum
of the solvent quality covering the range from poor to good
solvents. The values of normalized thermal blob mass were calcu-
lated by Eq. (16) for available values of the Mark–Houwink–
Sakurada constants. They are presented in Fig. 1. Depicted in an
accurately selected coordinate system, the dependences can be
approximated by a straight line, common for all data. The gener-
alized Mark–Houwink–Sakurada exponent dependence of the
normalized thermal blob mass, as deduced from Fig. 2, has the
following form

MT

Mmq

¼
n

exp½0:9,ð2a� 1Þ1=3�
oa=ða�0:5Þ

¼ exp
h
1:13aða� 0:5Þ�2=3

i
(18)

According to the formula obtained, the thermal blob mass is
infinite in a theta solvent. This is expected since the thermal blob
size is reversely proportional to the excluded volume which
vanishes at the theta condition [1]. In this case the macromolecular
mass is smaller than the thermal blob mass.

The thermal blob mass can be calculated by Eqs. (14) and (18)
as follows
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Fig. 6. Mark–Houwink–Sakurada exponent calculated by Eqs. (17) and (18) for
different values of molecular mass of the system poly(p-methylstyrene) – diethyl
succinate [19] above and below the theta-temperature (16.4 �C).
MT ¼
�

2:5
rsKq

�2

exp
h
1:13aða� 0:5Þ�2=3

i
(19)

Eqs. (17) and (18) make it possible to determine the Mark–
Houwink–Sakurada exponent solely on the basis of the value of
intrinsic viscosity and that measured in a theta solvent for a single
molecular mass.

The approach presented in this paper differs from that devel-
oped by Dondos [12–14], who analyzed the number of statistical
segments of a polymer at the onset of excluded volume behavior as
dependent on the solvent quality. The obtained results are also
different because the mass of Kuhn segment is not strictly
proportional to the mass of non-porous monomer [8].
3. Model confirmation

The intrinsic viscosity data [11], for other polymers than those
used to construct the Figs.1 and 2, were utilized to test the reliability
of Eq. (18). The values of ðMT=Mmq

Þ1=2�a were calculated from Eq.
(16) and compared in Fig. 3 with the line being the graphical
representation of Eq. (18). The obtained points are close to the line.

In Fig. 4 the values of Mark–Houwink–Sakurada exponent
calculated by Eqs. (17) and (18) are compared with these calculated
over a width interval of molecular mass [15–18]. The points are
close to the corresponding values obtained by the Mark–Houwink–
Sakurada relation.

For two of the systems analyzed [15,16], showing relatively
considerable deviations from the horizontal lines, the values of
thermal blob mass were calculated for several values of macro-
molecular mass by the following formula

MT ¼
�
½h�q
½h�

�1=ða�0:5Þ
M (20)

obtained from Eqs. (1), (2), (4)
The calculated values are compared in Fig. 5 to a single value,

determined from Eq. (19) for Mark–Houwink–Sakurada exponent
valid in a range of molecular mass. As previously, the points are
close to the corresponding lines.

The next system was the solution of poly(p-methylstyrene) of
different molecular masses in diethyl succinate, investigated at
different temperatures [19]. The constancy of the a-exponent at
a given temperature is demonstrated in Fig. 6, both above and
below the theta-temperature. The thermal blob at a given
temperature was calculated by Eq. (20) for each molecular mass.
The results are depicted in Fig. 7, in which the points form
a common temperature dependence of the thermal blob mass.
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4. Discussion and conclusions

A model of chain consisting of thermal blobs has been analyzed
in this paper. Accordingly, the thermal blob mass can be deter-
mined either by the Mark–Houwink–Sakurada constants and
exponent (Eq. (4)) or alternatively by the intrinsic viscosities and
exponent (Eq. (20)).

The form of solvent quality dependence of the thermal blob
mass normalized by the mass of non-porous monomer of fractal
aggregates representing an individual macromolecule in a theta
solvent and a thermal blob, has been also derived. It makes it
possible to describe the relation between intrinsic viscosities
measured for a polymer of single molecular mass.

The corresponding formulae make it possible to determine the
Mark–Houwink–Sakurada exponent solely on the basis of the
values of intrinsic viscosity and that measured in a theta solvent for
a single molecular mass. This value changes negligibly with the
molecular mass at a given temperature and is close to a-value
determined by the Mark–Houwink–Sakurada relation over a width
interval of molecular mass. It makes characterization of the struc-
ture of macromolecules easier.

The thermal blob mass calculated by Eq. (20) from intrinsic
viscosities and the a-exponent, characteristic for a polymer of
a single molecular mass, is close to that determined in a wider
range of molecular mass.
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